第210章 革命尚未成功(第2/2页)

看着何沫眼中流露出的疑惑,叶铭笑了一笑,随后在她的手机屏幕上点进了话题。

这个问题,下面已经有了上千的回答。

“不是有这么多回答吗?”

“要你嘴里说出来才是标准答案。”

叶铭接过她的手机,快速翻看了几页后眼睛一辆,点中了一个答案后把手机递给何沫。

“这个答案说得很好,能代表我的观点。”

……

这是一位叫“职业摸鱼”的答主写下的回答。

“为什么突然一下可控核聚变就从五十年到可持续运行了?”

因为叶神牛逼!叶神牛逼!叶神牛逼!

重要的事说三遍!

下面是正题。

可控核聚变不是一个新鲜事物,它的理论早已经比25岁的老姑娘还要熟。

现在最流行的托卡马克装置,便是上世纪50年代,由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人发明的。

而在过去二十年,无论是国际合作的可控核聚变研究计划ITER,还是各个有资格参与这场游戏的大国,也都不同程度地“点亮了太阳”。

甚至国内还曾经率先突破了100秒大关。

可以说,光是点燃聚变堆这种程度的成果,你连街头小报都上不去。

但之前的可控核聚变,一直有两大难题。

第一个难题,是等离子体环流器,它决定了温度、密度、比压、自举电流上限——但这个难题,其实已经不算很难,因为这次聚变采用的环流器是迭代后的三号环流器,可以达到1.8亿度的高温且稳定运行。

这不是需要黑科技就能实现的技术。

而第二个难题,则是增加Q值——因为本质上,托卡马克是可以通过大力出奇迹的。

只要你不考虑Q值,那么它就一定能稳定运行。

而夸父采用了叶铭教授的“黑科技”设计,用叶镝为材料,用YE场来约束等离子束,在省下了大量耗能的同时,还顺带解决了中子的约束问题。

因此,只要YE场产生器不出现问题,那么聚变就会一直持续下去。

可控聚变,从来都不需要什么内壁材料的突破。

因为没有任何材料能够耐得住上亿度的高温。

“而第二个问题,是不是意味着我们就此摆脱能源的桎梏了?”

“目前的聚变都是氘氚聚变,氘的成本很低,但氚的成本……高得离谱。”

“别看现在可控核聚变的技术已经成熟到了可以建商业堆的程度,但氚的来源和产量还是极为有限。”

“所以,我的答案是……”

“革命尚未成功,我们依旧未能摆脱能源的桎梏。”

看着回答,何沫愕然抬头。

叶铭含笑点头。

何沫:“那……”

“因为它是走向太空、走向氦3聚变的第一步。”叶铭望向她:“这答主说得挺好,为啥不点赞?”

何沫哼了一声:“比25岁老姑娘还熟……活该他没几个赞。”